30 research outputs found

    Parallel-Data-Free Voice Conversion Using Cycle-Consistent Adversarial Networks

    Full text link
    We propose a parallel-data-free voice-conversion (VC) method that can learn a mapping from source to target speech without relying on parallel data. The proposed method is general purpose, high quality, and parallel-data free and works without any extra data, modules, or alignment procedure. It also avoids over-smoothing, which occurs in many conventional statistical model-based VC methods. Our method, called CycleGAN-VC, uses a cycle-consistent adversarial network (CycleGAN) with gated convolutional neural networks (CNNs) and an identity-mapping loss. A CycleGAN learns forward and inverse mappings simultaneously using adversarial and cycle-consistency losses. This makes it possible to find an optimal pseudo pair from unpaired data. Furthermore, the adversarial loss contributes to reducing over-smoothing of the converted feature sequence. We configure a CycleGAN with gated CNNs and train it with an identity-mapping loss. This allows the mapping function to capture sequential and hierarchical structures while preserving linguistic information. We evaluated our method on a parallel-data-free VC task. An objective evaluation showed that the converted feature sequence was near natural in terms of global variance and modulation spectra. A subjective evaluation showed that the quality of the converted speech was comparable to that obtained with a Gaussian mixture model-based method under advantageous conditions with parallel and twice the amount of data

    Label-Noise Robust Multi-Domain Image-to-Image Translation

    Full text link
    Multi-domain image-to-image translation is a problem where the goal is to learn mappings among multiple domains. This problem is challenging in terms of scalability because it requires the learning of numerous mappings, the number of which increases proportional to the number of domains. However, generative adversarial networks (GANs) have emerged recently as a powerful framework for this problem. In particular, label-conditional extensions (e.g., StarGAN) have become a promising solution owing to their ability to address this problem using only a single unified model. Nonetheless, a limitation is that they rely on the availability of large-scale clean-labeled data, which are often laborious or impractical to collect in a real-world scenario. To overcome this limitation, we propose a novel model called the label-noise robust image-to-image translation model (RMIT) that can learn a clean label conditional generator even when noisy labeled data are only available. In particular, we propose a novel loss called the virtual cycle consistency loss that is able to regularize cyclic reconstruction independently of noisy labeled data, as well as we introduce advanced techniques to boost the performance in practice. Our experimental results demonstrate that RMIT is useful for obtaining label-noise robustness in various settings including synthetic and real-world noise

    Unsupervised Learning of Depth and Depth-of-Field Effect from Natural Images with Aperture Rendering Generative Adversarial Networks

    Full text link
    Understanding the 3D world from 2D projected natural images is a fundamental challenge in computer vision and graphics. Recently, an unsupervised learning approach has garnered considerable attention owing to its advantages in data collection. However, to mitigate training limitations, typical methods need to impose assumptions for viewpoint distribution (e.g., a dataset containing various viewpoint images) or object shape (e.g., symmetric objects). These assumptions often restrict applications; for instance, the application to non-rigid objects or images captured from similar viewpoints (e.g., flower or bird images) remains a challenge. To complement these approaches, we propose aperture rendering generative adversarial networks (AR-GANs), which equip aperture rendering on top of GANs, and adopt focus cues to learn the depth and depth-of-field (DoF) effect of unlabeled natural images. To address the ambiguities triggered by unsupervised setting (i.e., ambiguities between smooth texture and out-of-focus blurs, and between foreground and background blurs), we develop DoF mixture learning, which enables the generator to learn real image distribution while generating diverse DoF images. In addition, we devise a center focus prior to guiding the learning direction. In the experiments, we demonstrate the effectiveness of AR-GANs in various datasets, such as flower, bird, and face images, demonstrate their portability by incorporating them into other 3D representation learning GANs, and validate their applicability in shallow DoF rendering.Comment: Accepted to CVPR 2021 (Oral). Project page: https://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/ar-gan

    Label-Noise Robust Generative Adversarial Networks

    Full text link
    Generative adversarial networks (GANs) are a framework that learns a generative distribution through adversarial training. Recently, their class-conditional extensions (e.g., conditional GAN (cGAN) and auxiliary classifier GAN (AC-GAN)) have attracted much attention owing to their ability to learn the disentangled representations and to improve the training stability. However, their training requires the availability of large-scale accurate class-labeled data, which are often laborious or impractical to collect in a real-world scenario. To remedy this, we propose a novel family of GANs called label-noise robust GANs (rGANs), which, by incorporating a noise transition model, can learn a clean label conditional generative distribution even when training labels are noisy. In particular, we propose two variants: rAC-GAN, which is a bridging model between AC-GAN and the label-noise robust classification model, and rcGAN, which is an extension of cGAN and solves this problem with no reliance on any classifier. In addition to providing the theoretical background, we demonstrate the effectiveness of our models through extensive experiments using diverse GAN configurations, various noise settings, and multiple evaluation metrics (in which we tested 402 conditions in total). Our code is available at https://github.com/takuhirok/rGAN/.Comment: Accepted to CVPR 2019 (Oral). Project page: https://takuhirok.github.io/rGAN

    WaveCycleGAN: Synthetic-to-natural speech waveform conversion using cycle-consistent adversarial networks

    Full text link
    We propose a learning-based filter that allows us to directly modify a synthetic speech waveform into a natural speech waveform. Speech-processing systems using a vocoder framework such as statistical parametric speech synthesis and voice conversion are convenient especially for a limited number of data because it is possible to represent and process interpretable acoustic features over a compact space, such as the fundamental frequency (F0) and mel-cepstrum. However, a well-known problem that leads to the quality degradation of generated speech is an over-smoothing effect that eliminates some detailed structure of generated/converted acoustic features. To address this issue, we propose a synthetic-to-natural speech waveform conversion technique that uses cycle-consistent adversarial networks and which does not require any explicit assumption about speech waveform in adversarial learning. In contrast to current techniques, since our modification is performed at the waveform level, we expect that the proposed method will also make it possible to generate `vocoder-less' sounding speech even if the input speech is synthesized using a vocoder framework. The experimental results demonstrate that our proposed method can 1) alleviate the over-smoothing effect of the acoustic features despite the direct modification method used for the waveform and 2) greatly improve the naturalness of the generated speech sounds.Comment: SLT201

    CycleGAN-VC2: Improved CycleGAN-based Non-parallel Voice Conversion

    Full text link
    Non-parallel voice conversion (VC) is a technique for learning the mapping from source to target speech without relying on parallel data. This is an important task, but it has been challenging due to the disadvantages of the training conditions. Recently, CycleGAN-VC has provided a breakthrough and performed comparably to a parallel VC method without relying on any extra data, modules, or time alignment procedures. However, there is still a large gap between the real target and converted speech, and bridging this gap remains a challenge. To reduce this gap, we propose CycleGAN-VC2, which is an improved version of CycleGAN-VC incorporating three new techniques: an improved objective (two-step adversarial losses), improved generator (2-1-2D CNN), and improved discriminator (PatchGAN). We evaluated our method on a non-parallel VC task and analyzed the effect of each technique in detail. An objective evaluation showed that these techniques help bring the converted feature sequence closer to the target in terms of both global and local structures, which we assess by using Mel-cepstral distortion and modulation spectra distance, respectively. A subjective evaluation showed that CycleGAN-VC2 outperforms CycleGAN-VC in terms of naturalness and similarity for every speaker pair, including intra-gender and inter-gender pairs.Comment: Accepted to ICASSP 2019. Project page: http://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/cyclegan-vc2/index.htm

    AttS2S-VC: Sequence-to-Sequence Voice Conversion with Attention and Context Preservation Mechanisms

    Full text link
    This paper describes a method based on a sequence-to-sequence learning (Seq2Seq) with attention and context preservation mechanism for voice conversion (VC) tasks. Seq2Seq has been outstanding at numerous tasks involving sequence modeling such as speech synthesis and recognition, machine translation, and image captioning. In contrast to current VC techniques, our method 1) stabilizes and accelerates the training procedure by considering guided attention and proposed context preservation losses, 2) allows not only spectral envelopes but also fundamental frequency contours and durations of speech to be converted, 3) requires no context information such as phoneme labels, and 4) requires no time-aligned source and target speech data in advance. In our experiment, the proposed VC framework can be trained in only one day, using only one GPU of an NVIDIA Tesla K80, while the quality of the synthesized speech is higher than that of speech converted by Gaussian mixture model-based VC and is comparable to that of speech generated by recurrent neural network-based text-to-speech synthesis, which can be regarded as an upper limit on VC performance.Comment: Submitted to ICASSP201

    WaveCycleGAN2: Time-domain Neural Post-filter for Speech Waveform Generation

    Full text link
    WaveCycleGAN has recently been proposed to bridge the gap between natural and synthesized speech waveforms in statistical parametric speech synthesis and provides fast inference with a moving average model rather than an autoregressive model and high-quality speech synthesis with the adversarial training. However, the human ear can still distinguish the processed speech waveforms from natural ones. One possible cause of this distinguishability is the aliasing observed in the processed speech waveform via down/up-sampling modules. To solve the aliasing and provide higher quality speech synthesis, we propose WaveCycleGAN2, which 1) uses generators without down/up-sampling modules and 2) combines discriminators of the waveform domain and acoustic parameter domain. The results show that the proposed method 1) alleviates the aliasing well, 2) is useful for both speech waveforms generated by analysis-and-synthesis and statistical parametric speech synthesis, and 3) achieves a mean opinion score comparable to those of natural speech and speech synthesized by WaveNet (open WaveNet) and WaveGlow while processing speech samples at a rate of more than 150 kHz on an NVIDIA Tesla P100.Comment: Submitted to INTERSPEECH201

    StarGAN-VC: Non-parallel many-to-many voice conversion with star generative adversarial networks

    Full text link
    This paper proposes a method that allows non-parallel many-to-many voice conversion (VC) by using a variant of a generative adversarial network (GAN) called StarGAN. Our method, which we call StarGAN-VC, is noteworthy in that it (1) requires no parallel utterances, transcriptions, or time alignment procedures for speech generator training, (2) simultaneously learns many-to-many mappings across different attribute domains using a single generator network, (3) is able to generate converted speech signals quickly enough to allow real-time implementations and (4) requires only several minutes of training examples to generate reasonably realistic-sounding speech. Subjective evaluation experiments on a non-parallel many-to-many speaker identity conversion task revealed that the proposed method obtained higher sound quality and speaker similarity than a state-of-the-art method based on variational autoencoding GANs

    ConvS2S-VC: Fully convolutional sequence-to-sequence voice conversion

    Full text link
    This paper proposes a voice conversion (VC) method using sequence-to-sequence (seq2seq or S2S) learning, which flexibly converts not only the voice characteristics but also the pitch contour and duration of input speech. The proposed method, called ConvS2S-VC, has three key features. First, it uses a model with a fully convolutional architecture. This is particularly advantageous in that it is suitable for parallel computations using GPUs. It is also beneficial since it enables effective normalization techniques such as batch normalization to be used for all the hidden layers in the networks. Second, it achieves many-to-many conversion by simultaneously learning mappings among multiple speakers using only a single model instead of separately learning mappings between each speaker pair using a different model. This enables the model to fully utilize available training data collected from multiple speakers by capturing common latent features that can be shared across different speakers. Owing to this structure, our model works reasonably well even without source speaker information, thus making it able to handle any-to-many conversion tasks. Third, we introduce a mechanism, called the conditional batch normalization that switches batch normalization layers in accordance with the target speaker. This particular mechanism has been found to be extremely effective for our many-to-many conversion model. We conducted speaker identity conversion experiments and found that ConvS2S-VC obtained higher sound quality and speaker similarity than baseline methods. We also found from audio examples that it could perform well in various tasks including emotional expression conversion, electrolaryngeal speech enhancement, and English accent conversion.Comment: Published in IEEE/ACM Trans. ASLP https://ieeexplore.ieee.org/document/911344
    corecore